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Abstract. An rSQP optimization algorithm has been linked to the MPSalsa par-
allel reacting 
ows code. This goal is to develop SAND (Simultaneous Analysis
aNd Design) methods for use with large-scale PDE simulations. MPSalsa is a un-
structured grid �nite element code that uses a fully coupled Newton method to
solve the PDEs governing 
uid 
ow, heat transfer, and non-dilute mass transfer.
In this paper, we present results for optimization of a Chemical Vapor Deposition
reactor for growing thin �lms of Gallium Nitride. In particular, we address issues
of inexactness in the Jacobian matrix and of solution multiplicity.

1 Introduction

In this paper we present our current work in applying rSQP (reduced Se-
quential Quadratic Programming) optimization algorithms to steady state
reacting 
ow applications. This is a SAND (Simultaneous Analysis aNd De-
sign) approach that has the potential to be more eÆcient than traditional
black box (NAND) approaches. The advantage of the SAND approach is that
the nonlinear PDE problem (or constraints) is converged simultaneously to
the optimization problem, while in the NAND approach, the PDE problem
is converged every time the design parameters are changed. The drawbacks
of the SAND approach are that the interface of the application code and the
optimizer is more intrusive, requiring the ability to request linear solves of
the Jacobian matrix for the PDE problem, the residuals of the discretized
PDEs for a given state vector, and gradients of the objective function. An-
other outstanding issue, which we will touch on in this paper, is the level
of accuracy in the Jacobian matrix needed for the optimization method to
converge to the right solution.

Reacting 
ow applications are modeled by coupled sets of PDEs, and
can have nonlinearities due to convection, reaction rates, and dependency of
physical properties on the local state (e.g. calculating density from the ideal
gas law). Some examples of reacting 
ow systems of engineering interest
are combustion systems, catalytic reactors, and Chemical Vapor Deposition
(CVD) reactors. In this paper we will study a CVD reactor design problem



2 Salinger et al.

of interest to researchers in the Chemical Processing Science department at
Sandia.

In Section 2 we present the CVD reactor optimization problem. In Section
3.1 the governing PDEs, the solution methods, and the stability analysis
algorithms implemented in MPSalsa are presented. In Section 3.2 we brie
y
present the optimization methods and interface to MPSalsa. In Section 4
the outcome of our preliminary runs are shown, including some interesting
results concerning the e�ects of inexactness in the Jacobian and the e�ects
of solution stability and multiplicity.

2 CVD Reactor Optimization Problem

The rotating disk reactor is a common con�guration for performing Chemical
Vapor Deposition (CVD) of thin �lms, including numerous semiconducting
materials. The optimization problem formulated in this paper is generated
from the work of Sandia researchers to improve the design of the inlet of a
rotating disk CVD reactor for use in growing thin �lms of Gallium Nitride
(GaN). GaN is used in blue light emitting diodes and other photonic devices.
The quality of the electronic device is highly dependent on the uniformity of
the growth rate at di�erent positions in the reactor. We are attempting to
use simulations and optimization algorithms to determine if a new reactor,
designed with a restricted inlet for reducing the costs of reactant gases, can
achieve highly uniform GaN �lm growth.

The �nite element mesh for the base shape of the reactor is shown in
Figure 1(a). This is an axisymmetric (2D) model, where the left side is the
axis of symmetry. A mixture of trimethylgallium, ammonia, and hydrogen
gases (Ga(CH3)3, NH3, and H2) enter the top of the reactor, 
ow over
the disk, which is heated, and then 
ow down the annular region out the
bottom of the mesh. At the heated disk, the Ga(CH3)3 and NH3 react to
deposit a GaN �lm and release three molecules of methane (CH4). This
simpli�ed mechanism has been shown to work well in approximating �lm
uniformities since the growth rate of GaN is predominantly transport limited
Pawlowski et al., 2000. This mesh depicts a restricted inlet design, where the
top of the reactor has a smaller radius than the lower part of the reactor.

The main parameter used in this paper is the inlet velocity of the gases,
V . Two additional parameters in this model de�ne the shape of the inlet,
namely the Shoulder Radius and Shoulder Height, which de�ne the position
where the mesh transitions from the inlet radius to the larger reactor radius.
The mesh is moved algebraically and continuously as a function of these
geometric design parameters. Figure 1(b) shows how the mesh changes for
a decreased shoulder radius, and Figure 1(c) shows how the mesh deforms
continuously for larger values of the shoulder radius and shoulder height. If
the optimum occurs too far away from where the initial mesh is generated,
it would be appropriate to remesh the new geometry from scratch.
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(a)

(b)

(c)

Fig. 1. Three di�erent meshes for the restricted inlet design of the rotating disk
reactor are shown: (a) the base case mesh where the shoulder radius is above the
edge of the disk and the height is half of the inlet height; (b) a mesh when the
shoulder radius parameter is decreased; (c) a mesh where the shoulder radius and
height are both increased above the base case.
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The objective function measures the uniformity of the growth rate of GaN
over the disk. We chose an L2 norm over an Linf norm so that it is continuous
and with a continuous derivative. Since the L2 norm had very small values
over a range of parameters, the log was taken. The �nal form of the objective
function is

Objective Function = F = log(SD + 10�10) (1)

where the standard deviation squared SD is de�ned as

SD =
1

Nn

NnX
i=1

(
gi � gave

gave
)2: (2)

Here Nn is the number of nodes on the surface, gi is the growth rate of GaN
at node i, and gave is the average growth rate.

3 Numerical Methods

3.1 Reacting Flow Simulation

The governing equations and numerical methods summarized in this section
have been implemented in the MPSalsa computer code, developed at Sandia
National Labs. More complete descriptions of the code and capabilities can
be found in the following references [Shadid et al., 1996, Salinger et al., 1996,
Salinger et al., 1999b, Pawlowski et al., 2000, Eldred et al., 1996]. The fun-
damental conservation equations for momentum, heat, and mass transfer are
presented for a reacting 
ow application. The equations for 
uid 
ow consist
of a momentum balance (the Navier-Stokes equations) and the total mass
balance (continuity equation). The steady-state momentum equation takes
the form:

�(u � r)u�r �T� �g = 0; (3)

where u is the velocity vector, � is the mixture density, and g is gravity
vector. T is the stress tensor for a Newtonian 
uid:

T = �P I�
2

3
�(r � u)I+ �[ru+ruT ] (4)

Here P is the isotropic hydrodynamic pressure, � is the mixture viscosity,
and I is the unity tensor. The total mass balance is given by:

r � (�u) = 0 (5)

The density depends on the local temperature and composition via the ideal
gas law. For nondilute systems, the multicomponent formulation is used:

� =

Po

NgX
j=1

WjXj

RT
; (6)
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where Po is the thermodynamic pressure, R is the gas constant, T is the
temperature, Xj is the mole fraction of the jth species, Wj is the molecular
weight of the jth species, and Ng is the number of gas-phase species (which
is 4 for the model in this paper.

The energy conservation equation is given as:

�Ĉp(u � r)T = r � (�rT )� S; (7)

where Ĉp is the mixture heat capacity and � is the mixture thermal con-
ductivity. The last term on the right hand side S is the source term due to
the heat of reaction, which is negligible under the process conditions in this
example problem.

The species mass balance equation is solved for Ng-1 species:

�(u � r)Yk) = r � jk +Wk _!k for k = 1; : : : ; Ng-1; (8)

where Yj is the mass fraction of the jth species, jk is the 
ux of species k rel-
ative to the mass averaged velocity u and _!k is the molar rate of production
of species k from gas-phase reactions. A special species equation, which en-
forces the sum of the mass fractions to equal one, replaces one of the species
balances (usually the species with the largest mass fraction):

NgX
k=1

Yk = 1 for k = Ng (9)

The di�usive 
ux term (Multicomponent Dixon-Lewis Formulation) includes
transport due to both concentration gradients and thermal di�usion (Soret
e�ect):

jk = �Yk

0
@ 1

XkW

NgX
j 6=k

WjDkjrXj �
DT
k

�Yk

rT

T

1
A (10)

Where Xj is the mole fraction of species j, Dkj is the ordinary multicompo-
nent di�usion coeÆcient, and DT

k is the thermal di�usion coeÆcient. W is
the mean molecular weight of the mixture given by:

W =

NgX
k=1

XkWk =
1

NgX
k=1

Yk

Wk

(11)

The conversion between mass (Yk)and mole (Xk) fractions is:

Yk =
Wk

W
Xk (12)

At the disk surface, surface chemical reactions take place. In general these
can be very complicated, but for this model problem the reaction has been
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shown to be approximated very well by a transport limited model. In this
case, the growth rate of GaN on the surface (as well as the consumption
of Ga(CH3)3 and NH3, and the production of CH4) is proportional to the
concentration of trimethylgallium (Ga(CH3)3) at the surface.

In general, the numerous physical properties in the above equations are
dependent on the local temperature and composition. In the MPSalsa code,
we use the Chemkin library and database format to obtain these physical
properties. These terms add considerable nonlinearity to the problem.

The above system of 9 coupled PDEs (for unknowns ur, uz, u�, P , T ,
YGa(CH3)3 , YCH4

, YNH3
and YH2

) are solved with the MPSalsa code. MP-
Salsa uses a Galerkin/least-squares �nite element method to discretize these
equations over the spatial domain. While this code is designed for general
unstructured meshes in 2D and 3D, and runs on massively parallel comput-
ers, this application is 2D, uses the mesh shown in Figure 1(a), and was
run on a single processor workstation. The discretized system contains 22000
unknowns.

A fully coupled Newton's method is used to robustly calculate steady-
state solutions. While analytic Jacobian entries are supplied for derivatives
with respect to the solution variables and the density, derivatives of the other
physical properties are only calculated with the numerical Jacobian option.
The resulting linear system at each iteration is solved using the Aztec package
of parallel, preconditioned iterative solvers. In this paper, we exclusively used
an ILU preconditioner and the GMRES solver with no restarts. On a single
processor SGI workstation, a typical matrix formulation required 9 seconds
for the inexact analytic Jacobian and 96 seconds to calculate the (nearly)
exact �nite di�erence numerical Jacobian. A typical linear solve required 40
seconds.

Parameter continuation methods have been implemented in MPSalsa via
the LOCA library. These algorithms include an arclength continuation al-
gorithm for tracking solution branches even when they go around turning
points. As will be seen in Section 4, this is a powerful tool for tracking
out solution multiplicity. In addition, a turning point tracking algorithm has
been implemented to directly track out the region of multiplicity as a func-
tion of a second parameter. A complementary tool of performing linearized
stability analysis by approximating the few rightmost eigenvalues of the
linearized time dependent problem has also been successfully implemented
[Lehoucq and Salinger, 2001, Salinger et al., 1999a, Burroughs et al., 2001].

3.2 rSQP optimization

The optimization problem was solved by interfacing MPSalsa with the rSQP
code from Carnegie Mellon university. Future work will use the updated
rSQP++ code. The optimization problem is formulated as follows:



Reacting Flows Optimization with rSQP and MPSalsa 7

min f(y; z)
s.t. c(y; z) = 0

xL � x � xU

x =

�
y

z

�

x 2 Rn; y 2 Rm;m � O(106)
z 2 Rn�m; n�m = O(1� 50)

(13)

where f is the objective function, c are the constraint equations (i.e., the
residual vector for the discretized PDE problem), y is the vector of length m
of state variables corresponding to the velocity, temperature, pressure, and
mass fraction unknowns, and z is a vector of length n � m of decision or
optimization variables.

We use the reduced SQP optimization algorithm, as it generally requires
the fewest number of function and gradient evaluations and is considered more
robust than other optimization methods. The SQP method can be derived
from the application of a Newton method to the KKT conditions of (13). At
each iteration k, SQP forms and solves a quadratic programming subproblem
written as:

Min gTk d+
1
2d

TWkd

d 2 Rn

s.t. AT
k d+ ck = 0

dL � xk + d � dU

(14)

where gk is the gradient of the objective function, Wk is the Hessian of the
Lagrangian or its approximation, Ak is the Jacobian of the constraints, and
d is the step size calculated from the optimization problem. The subscript k
indicates that these quantities are calculated at xk. (For convenience we will
suppress this subscript for the remainder of this section.)

If second derivative information is not available then the Hessian matrix
is often approximated with quasi-Newton updates. However, under these con-
ditions (14) can be prohitive to solve because either a dense matrix Wk or
its quasi-Newton update factors of dimension n must be stored. Instead, we
modify the formulation of (14) through a reduced space decomposition. Here
the the search direction d is represented by a range space step (Y pY ) and a
null space step (ZpZ). This decomposition is summarized as follows:

AT = [N jC]
d = Y pY + ZpZ

Y =

�
NTC�T

I

�

Z =

�
I

�C�1N

� (15)
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where C is the Jacobian of constraints with respect to the state variable
(which is the Jacobian matrix from the PDE model) and N is the matrix of
constraint gradients with respect to the design variables. Note that ATZ = 0
and the Y TZ = 0. Also, an alternate choice for the range space basis, Y T =
[I j 0] leads to a cheaper (but sometimes less robust) computation if n �m

is large.
The vectors pY and pZ are obtained by substituting (15) into (14) to

yield a reduced space quadratic programming problem Biegler et al., 1995
that we solve here using a variation of the Goldfarb-Idnani algorithm (called
QPKWIK).

Min (ZT g + w)T pZ + 1
2p

T
ZBpZ

s.t. a� zk � pZ � b� zk
a� zk � Y pY � C�1NpZ � b� zk � Y pY
pY = �(ATY )�1c
B � ZTWZ (BFGS approximation)
xk+1 = xk + d

(16)

The following steps are performed for each iteration of the optimizer.

1. An initial guess of the variables must be supplied to start the algorithm.
2. Calculate f,rf ,c,C,N
3. Calculate pY = (ATY )�1c using the linear solver
4. Calculate C�1N using a linear solver n-m times
5. Solve the reduced QP using QPKWIK to generate pZ
6. Calculate d=Y pY + ZpZ
7. Are the Karush Kuhn Tucker conditions satis�ed? If Yes, then stop
8. Apply a line search to �nd a stepsize � that satis�es the Armijo condi-

tions.
9. Set xk+1 = xk + �d and k = k + 1. Goto step 2

One addition to this algorithm is the option to take second order correc-
tion steps. This allows additional iterations of the model equations at each
rSQP iteration in order to keep the constraint residuals small. As seen be-
low, in some cases this option can lead to signi�cant improvement in the
performance of the optimizer.

4 Results

4.1 One Parameter Model

The �rst results are shown in Figure 2 for the one parameter system. Here
the inlet velocity V is the design parameter while the Shoulder Radius and
Shoulder Height parameters are held �xed at 6:35 and 5:08 as in Figure
1(a). Starting at a velocity of V = 20 (cm/sec), a simple continuation run
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Fig. 2. Results for a 1 parameter continuation run (bold line), showing the Objec-
tive Function as a function of the inlet velocity of the reactant gases. Two results for
the rSQP optimizer are shown, where the run starting at V = 14 (circle symbols
with connecting arrow) converged to the expected local minimum while the run
starting at V = 20 (square symbols with connecting arrow) converged to a point
not seen on the continuation run.

down to a velocity of V = 7 showed a clear minimum near V = 11:7 and
Objective Function F = �6:9.

Two runs of this problem using the rSQP optimizer were performed. For
this run, the exact numerical Jacobian was used, and up to 5 second order
correction steps per iteration were allowed. The linear solver tolerance was
set at a relative residual reduction of 10�8. When starting at V = 20 and con-
verged PDE constraints, the optimizer converged in 15 iterations to a point
at V = 9:00 and F = �6:36 (in about 3 hours compute time). However, when
starting at V = 14 and with a converged steady-state solution, the optimizer
reached the minimum at V = 11:67 and F = �6:967 in 14 iterations. As can
be seen in Figure 2, the �rst run does not appear to even be on the solution
branch of converged PDE constraints.

Three deposition pro�les as a function of radial position are shown in
Figure 3. The pro�le at the initial conditions of V = 20 has a minimum
growth rate at the center and has a 8:5% nonuniformity. The solution found
by the optimizer and (appears to be the minimum from the continuation runs)
at V = 11:67 shows a much 
atter pro�le with an internal maximum, and an
overall nonuniformity of 1:2%. The other solution found by the optimizer at
V = 9:00 has a very similar shape, a smaller overall growth rate, and a 1:8%
nonuniformity. Growth rate nonuniformities in the neighborhood of 1:0% are
desirable.
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Fig. 3. Radial pro�les of the surface deposition rate at three di�erent solutions: the
inital guess at V = 20, and the �nal solutions from the two optimization runs at
V = 11:67 and V = 9:00.

Subsequent parameter continuation and linearized stability analysis calcu-
lations revealed that this solution is indeed a solution to the PDE constraints,
yet a solution that is linearly unstable. The results of an arclength parameter
continuation run with linear stability determinations are shown in Figure 4.
The dashed line indicated physically unstable solutions while the solid lines
are locally stable. One can see that there are three local minima in the objec-
tive function, only one of which is linearly stable. Over a large range of inlet
velocities, 6:11 < V < 15:86, there are three solutions that exist at the same
parameter values. The rSQP optimizer, when started at V = 20, jumped into
the basin of attraction for a local minimum at V = 9:00. The physical basis
for the multiplicity is well understood. Recirculation 
ow cells can develop
as a result of the buoyancy force of the heated reactor surface.

4.2 Three Parameter Model

The one parameter model showed that it is imperative to be aware of solution
multiplicity and unstable solution branches. Continuation runs on the turning
points de�ning the boundaries of multiplicity were performed to see how
the region of multiplicity changes as a function of the additional geometric
parameters. The e�ect of Shoulder Radius on the multiplicity region is shown
in Figure 5, and the e�ect of Shoulder Height on the region of multiplicity
is shown in Figure 6. The results show that the maximum velocity where
multiplicity occurs has a direct dependence on the Shoulder Radius and is



Reacting Flows Optimization with rSQP and MPSalsa 11

Fig. 4. Results for a 1 parameter continuation run with arclength continuation and
linearized stability analysis are shown. The dashed lines represent unstable solution
branches. The symbols show the results of the two optimization runs from Figure
2.

relatively insensitive to the Shoulder Height. The minimum velocity where
multiplicity occurs is insensitive to the Shoulder Radius but has an inverse
dependence on the Shoulder Height.

A single three-parameter optimization run was performed, starting at
the same conditions where the one-parameter run (with parameter Velocity
and �xed Shoulder Radius and Shoulder Height) converged to the stable
minimum: Velocity = 14:0, Shoulder Radius = 6:35, and the Shoulder Height
= 5:08. The run was performed with up to 5 second order correction steps
per optimization iteration. After 60 iterations, the objective function had
been driven down to F = �6:32, which is not as low as the F = �6:967
achieved in the 1 parameter optimization. Possible reasons for this are that
the three-parameter model is converging to a local minimum or that the
singularities in the region are causing convergence problems. Future runs will
need to be made to fully understand this preliminary result. The result of
the three-parameter run is compared to the one-parameter run in Figure 7.

4.3 E�ects of Jacobian Inexactness and Second Order

Corrections

To test the e�ects of inexactness in the Jacobian and Second Order Correction
Steps on the convergence of the optimization algorithm, three more runs of
the 1-parameter model were performed. These all started at V = 14 for com-
parison with the successful optimization run, which was computed with a full
numerical Jacobian and up to 5 second order correction steps per iteration.
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Fig. 5. Results of turning point continuation runs showing how the region of mul-
tiplicity identi�ed in Figure 4 changes as a function the geometric Shoulder Radius
parameter.

Fig. 6. Results of turning point continuation runs showing how the region of mul-
tiplicity identi�ed in Figure 4 changes as a function the geometric Shoulder Height
parameter.
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Fig. 7. A comparison of the 3-parameter optimization run after 60 iterations and
the 1-parameter run, started at the same conditions, which converged after 14
iterations.

The results are shown in Figure 8. In the �rst additional run, the analytic
(inexact) Jacobian was used, and the second order corrections were retained.
This Jacobian leaves out the derivatives of all the physical properties with
respect to the local state (temperature and composition), only including the
correct density dependence. The Figure shows that this run converges visi-
bly to the same optimum as the original case, both in iteration 11, though
the original case reached the optimum in 14 iterations and the inexact case
failed to meet the convergence criterion after 40 iterations. Two more runs
were performed where no second order correction steps were allowed. The
run with the inexact Jacobian converged visibly to the optimum after 86 it-
erations though had not converged within the tolerance after 100 iterations.
The run with the exact numerical Jacobian without second order corrections
had not yet converged to the optimum and was prematurely stopped after
120 iterations, surprisingly performing worse than the run with the inexact
Jacobian.

For this problem, MPSalsa required 96 seconds to �ll the full numerical
Jacobian as comnpared to only 9 seconds for the analytic Jacobian, while an
iterative linear solve required approximately 40 seconds. The runs with sec-
ond order corrections required, on average, 5 linear solves per iteration, while
the runs without second order corrections required exactly 2 linear solves per
iteration. Therefore for this problem, the quickest numerical approach for
visibly reaching the optimum was using the inexact analytic Jacobian and
with the second order correction steps. The runs with the inexact Jacobian
did not trigger the convergence tolerance set in the algorithm, and there-
fore performed many wasted iterations after visibly reaching the optimum.
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Fig. 8. A comparison of 4 runs for the 1-parameter model, comparing exact and
inexact Jacobians, and with and without second order correction steps (S.O.C.).

Since there are numerous approximations in the model, particularly with the
chemistry mechanisms, the optimum needs only be converged to two digits
of accuracy.

5 Summary and Conclusions

We have successfully coupled an rSQP code with MPSalsa, a large-scale re-
acting 
ows code. We used the algorithms to study the restricted inlet design
of the rotating disk chemical vapor deposition reactor for growth of thin GaN
�lms. We have veri�ed the optimization algorithms by comparison with a pa-
rameter continuation run for a 1-parameter model. We found that solution
multiplicity can lead to problems, since the optimizer converged to a local
minimum on an unstable solution branch on the very �rst run. Continuation
of the turning points with respect to the additional geometric parameters,
using algorithms in the LOCA library, delineated the region of solution mul-
tiplicity. The optimization of the full three-parameter model was run for 60
iterations, but had not yet reached convergence.

From this preliminary experience, we can draw an important conclusion:
solution multiplicity of nonlinear steady-state problems must be recognized
and can be diagnosed using stability analysis tools. The technique in this
paper of tracking the region of multiplicity is not scalable to larger numbers of
design parameters, and is more expensive than the optimization calculations.
At a minimum, the stability of the candidate optimum must be checked
with a linear stability analysis tool. Concerning inexactness in the Jacobian
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matrix, and the e�ect of second order correction steps, we have gathered some
evidence. For this run, it appears that inexactness in the Jacobian does not
seriously hinder convergence, particularly if second order correction steps are
used.
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