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Abstract

We reconsider the production planning problem that is solved by the Evaluation Planning Module (EPM), which is used to project how facilities and technicians will be used at Pantex.  We describe a general formulations of this production planning problem that can be solved with general-purpose optimizers.  Further, we describe a mixed-integer formulation of the problem that can be solved with branch-and-bound methods.  We evaluate the solutions currently provided by the EPM, and we illustrate the utility of these problem formulations by applying general-purpose optimizers to generate globally optimal solutions.  Finally, we evaluate the problem formulation used by the EPM.

1 Introduction
Sandia National Laboratories has developed and implemented the Pantex Process Model, (Kjeldgaard, et al, 1998) a computerized model to support the planning and scheduling activities at Pantex, a US Department of Energy production plant in Amarillo, Texas. The plant simultaneously supports three major DOE programs—nuclear weapon disposal, stockpile evaluation, and stockpile maintenance— which share its facilities, technicians, and equipment. The model incorporates modern management science techniques to optimize production planning and scheduling in the complicated production system at Pantex.

The Evaluation Planning Module (EPM) is one of the core tools in the Pantex Process Model. This module provides production planning tools that are used to project how facilities and technicians will be utilized over a given planning horizon (typically a year).  Kjeldgaard et al. [2,3,4] describe formulations of this planning problem.

In this report we describe recent progress with new formulations of the EPM production planning problem that have been developed in the Mathematics, Computational and Computer Sciences Center at Sandia National Laboratories (9200). We present a generic formulation of the EPM production planning problem and argue that the formulations previously developed are derivatives or approximations to this basic formulation.  We reformulate the problem to develop formulations that can be solved by general purpose solvers: direct search methods and mixed-integer linear branch-and-bound.  Direct search methods do not rely on the gradient of the objective function and they do not estimate the gradient.  Branch-and-bound methods recursively partition the search domain to find provably optimal global solutions. Both of these classes of general-purpose optimization methods are quite diverse, so a wide range of optimizers can be applied to these new formulations.

To illustrate the utility of these formulations, we provide some preliminary experiments of the application of general-purpose solvers to the production planning problem. We applied a simple evolutionary algorithm (EA) to perform global optimization for the EPM.  This methods was able to solutions within 1% of the global optimum in 46% of the random trials.  We also applied a simple pattern search method to refine the final solution provided current EPM (the 
[image: image1.wmf]v

-variable formulation [22]).  This study shows that the final solution generated by the EPM is not particularly close to a local optimum.  Further, the refined solution is a global optimum, so the solution of the
[image: image2.wmf]v

-variable formulation is in the general neighborhood of a global optimum. 

Additionally, we have updated the mixed-integer program (MIP) to better reflect the PPM model. We have resolved lingering data modeling issues so the MIP can use data from the PPM database. We have begun working on the translation of the continuous-time solutions generated by the v-variable formulation and evolutionary algorithms to a discrete-time formulation, which is necessary to perform formulation comparison studies.
These results clearly illustrate the utility of general-purpose optimization techniques for these production planning problems.  They also point to the need to more carefully examine the algorithmic difficulty and problem formulation for this class of problems.  We evaluate several different aspects of the EPM problem formulation, noting weaknesses in the formulation and describing one way that the formulation could be tightened to provide a more accurate model of resource availability.
2 Problem Description

A substantial portion of the Pantex workload relates to tests of weapons in the active stockpile. Each of these jobs involves partial disassembly of the weapon, one or more tests, and then re-assembly and return of the weapon to the active stockpile. The jobs are generally referred to as evaluations, and their planning and scheduling fits a job-shop paradigm. Each job consists of a set of tasks.  Some pairs of tasks have precedence constraints, where one job must complete before the other begins
. The tasks vary widely in duration.  Timing restrictions must be met: e.g., the earliest times when tasks can start, and the latest times when they can finish. The EPM planning problem is formulated using time periods, which are typically comprised of six consecutive eight-hour days. Because of uncertainties in the duration of tasks used in the planning problem, solutions to this problem are typically provided with an hourly time resolution.
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Figure 1. Illustration of an evaluation job, including a parent and daughter job.  Arrows between tasks indicate precedence constraints.

Figure 1 shows a typical evaluation job. Tasks P-1 through P-6 
represent the parent job, while tasks D-1 through D-4 represent a daughter job. Daughter jobs begin only after their enabling task is completed in the parent job. In this case, Task D-1 can commence only when P-3 is complete. Daughter jobs may themselves have daughter jobs.  Consequently the precedence constraints between tasks form a tree structure, but they are highly chainlike.  The duration of each task is depicted by the width of the boxes; tasks can be as short as an hour or as long as several months. Tasks are assumed to have a fixed duration for purposes of the EPM planning problem.

Each task can have an earliest allowable start time (EAST) and a latest allowable finish time (LAFT). The first task in a parent job often has an EAST that is tied to the arrival of the weapon. The task for the test itself often has a LAFT because the test has to be conducted on or before a certain date to avoid tying up external resources (e.g., off-site engineers).

The evaluation of each task requires a specific facility type (e.g., a Task Bay with 220 electricity) and a qualified crew (e.g., 2–3 people holding a specific certification). Facilities are hierarchically arranged to reflect how one facility can be replaced by another, more general facility. Each technician has a list of certifications to which (s)he can be assigned. The availability of each technician and the number of facilities of a given type varies by time period.

 In a schedule, each job would be assigned to a specific facility and given a specific team of qualified technicians.  However, for planning future technician/facility needs, it is currently sufficient to assign tasks to a pool of facilities and technicians. Each technician is assigned to certifications by specifying the amount of time that will be devoted to each certification during each time period. No technician is assigned more time units for a particular certification during a time period than the sum of the task lengths (within that period) of tasks requiring that certification.  For example, if there is only one task assigned to the time period and it requires 3 technicians for 2 units each, then no technician can have more than 2 units assigned to that certification during that time. 

 A production plan assigns a start time and facility to each task. Preemption is not allowed, so a task will occupy that facility for its entire duration beginning at its start time. A production plan is feasible if:

1)
All precedence constraints, release dates, and deadlines are obeyed.

2)
Each task is assigned to an acceptable facility (type matches requirement).

3)
The total amount of work scheduled for each facility type during any particular time period does not exceed the availability of such facilities.

4) In each time period the requirements for technicians are matched by technician assignments and the total time assigned to each technician is not greater than an entire time period. 

5) For each time period, no technician is assigned to a particular certification for more time units than the sum of the task lengths (within that period) of tasks requiring that certification (in the example above, constraint (4) could be satisfied by a single technician for 6 hours).

Typically, an EPM planning problem spans a year and involves at least 500 jobs and 1000 tasks. Each job has from one to six tasks. About 28 facility types are involved along with 300 technicians, each of whom holds 2–3 of the 80 possible certifications. In practice, these planning problems are often infeasible
.  Consequently, the EPM module formulates the EPM planning problem using ghost facilities and ghost certification hours that reflect the number of additional resources that are required by a production plan.  Thus the only constraints on a production plan are the scheduling constraints, which are much easier to satisfy. With this formulation, production plans are evaluated by summing the total number of hours of ghost facilities and ghost technicians that are required in each time period.  These two factors are weighted equally.

3 Mathematical Problem Description

In this section we provide a mathematical formulation of the EPM planning problem described in the previous section.  This general formulation defines the underlying problem that is being solved by the EPM.  As such, it is qualitatively different from previous formulations [1,2,3,4], which have been developed in the context of specific solution techniques.  Thus this general formulation provides a basis for evaluating and comparing the previous formulations as well as the other formulations described later in this report. Specifically, comparisons with this mathematical formulation provide a basis for describing how the formulations used in various solution strategies approximate or simply reformulate the EPM planning. 

For simplicity, we assume that technicians are available on all working days and all certifications are valid for the entire planning horizon. The granularity of the time dimension is a single workday that contains eight hours of work, and each time period contains six days. Thus the duration of a time period is 6.  We have also ignored the facility hierarchy structure that allows a one facility type to function as another at a penalty; the data sets that have been used to benchmark solution techniques for the EPM planning problem do not include facility hierarchy information.

Formally, the general EPM formulation is as follows.  Suppose we have

J tasks, indexed  j,i = 1, 2, …, J  (with task J being a termination task)

K facility types, indexed by either k = 1, 2, …, K, or i= 1, 2, …, K
E technicians (employees), indexed by e = 1, 2, …, E
C certifications, indexed by c = 1, 2, …, C
T time periods, indexed by t = 1, 2, …, T,
and for each task, technician, and facility we have the following inputs:

Task Inputs

dj 
=
duration of task j in days

rj
=
the release date for task j (i.e. its EAST) in days

(j 
=
latest time for completion of task j (i.e. its LAFT) in days
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K


=
the set of possible facility types for task 
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Lc
=
set of tasks requiring certification c
Technician Inputs

hj
=
number of technicians (crew size) required for task j
Het
=
days of availability for technician e in period t
Ce
=
set of certifications held by technician e.

Facility Inputs
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=
days of availability for facility type 
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 in period t
Let 
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denote that task 
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immediately precedes task 
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. The decision variables in the general EPM formulation are:


[image: image11.wmf]j

x


=
the time at which task 
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 starts
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f


=
the facility type used by task 
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.

The following variables are also used to define the objective function:
yect
=
number of days that technician e uses certification c in period t
fkt
=
number of days of shortage for type k facilities in period t 

qct
=
number of days of shortage for certification c in period t
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=
number of days spent processing task 
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in time period t when it is started at time 
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=
Weight of the facilities overage in the objective
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=
Weight of the technician overage in the objective.

We are now prepared to define the general EPM formulation (Formulation I):

minimize 
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Constraints (1), (2) and (3) enforce EASTs, LAFTs, and precedence constraints respectively.  Constraints (4) ensure that an appropriate facility has been chosen, and constraints (5) ensure that there is sufficient facility capacity in each time period.  Constraints (6) ensure that each technician is not used longer than his availability, and constraints (7) ensure that there are enough technicians (by certification) assigned to the work in each time period.  Constraints (8) ensure that no technician is assigned more time units for a certification during a time period than the sum of the task lengths (within that period) of tasks requiring that certification. Finally, constraints (9) and (10) ensure that the shortages are nonnegative quantities.

The current formulation used by the EPM is the 
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-variable formulation.  To compare the 
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-variable formulation with Formulation I, note that the solution process used by the EPM is broken into two stages [1].  In the first stage, a heuristic method is used to find solutions to the 
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-variable formulation*.  The 
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-variable formulation is a linear formulation that models tasks by an activity measure that reflects how much of the task is being processed in a given time period. The solution to the v-variable formulation is then processed to generate starting times for tasks.  In the second phase, these starting times are used by a linear program to compute the facility and technician overages.  Consequently, the first phase is responsible for finding a start times that satisfy constraints (1), (2) and (3) and for assigning tasks to facilities, while the linear program in phase two simply computes the objective function given these inputs subject to the remaining constraints in Formulation I.  This approach is similar to what we describe in the next section, though we describe how to use a network flow algorithm [7] to compute the technician allocation variables, which should be faster compute than a general linear program.

4 Optimization Formulations

This section describes three formulations of the EPM planning problem that revise Formulation I to allow solution by general-purpose optimization methods.  In each of these formulations, the set of feasible plans is the same as that in Formulation I.  The difference is the manner in which the linear constraints in Formulation I are managed.  Formulations II, III and IV are bound-constrained formulations that hide the linear constraints through different penalty and problem-transformation methodologies.

We begin by revisiting Formulation I to take note of how the structure of the constrained region can be exploited to simplify this formulation. The definition of Formulation Ia is given below. The objective of Formulation Ia differs from Formulation I in that the constraints on the technicians implicitly form a network flow problem that is solved separately. Figure 2 illustrates this network flow problem. A network flow problem is solved for each time period to compute 
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 to indicate that the shortage is computed by the network flow subproblem). The flow goes from node 
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 to node 
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. The technician assignments to certifications are represented as flows from technician nodes to certification nodes. The capacities on the edges of this network are set as follows:
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The value of 
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reflects the upper bound on the total time available for a technician (constraint (6)), the value of 
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reflects the upper bound on the total time that a technician can spend on a given certification (constraint (8)), and the value of 
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. If this flow problem can be solved such that the flow along each of the edges
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is maximized, then all of the certification demand for this time period can be met without additional technicians.  More generally, this may not be the case, and the value of 
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Figure 2: Illustration of the network flow problem that is used to compute 
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We are now prepared to define the revised general EPM formulation (Formulation Ia):

minimize 
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The only difference in terms of the space of solutions between Formulation I and Ia, is the assumption that 
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 for all j.  This assumption was made here and in subsequent formulations because the initial data set used in our computational experiments has this property. We revisit the implications of this assumption in the discussion section.

Formulation Ia can be transformed to a bound-constrained formulation by observing that constraints (11) and (12) are simple bound constraints.  Formulation II simply folds the violation of precedence constraints into the objective function with a simple penalty methodology.  Let 
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and zero otherwise.  Then Formulation II is:

minimize 
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For large problems, it may be difficult to satisfy all of these precedence constraints. We can trade off the feasibility of precedence constraints for the feasibility of the bound constraints by considering a reformulation that defines 
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 is feasible with respect to precedence constraints, though it may violate its upper bounds. Formulation III uses a simple penalty method to penalize violations of the upper bounds on 
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The equality constraints (17) can easily be folded into the calculation of the objective for this problem, so this problem is essentially bound-constrained.

For problems with long chains, the upper bound on 
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 may be rather weak, leading to many feasible points in the bounded region that violate the upper bounds on 
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. Consequently, we revised this formulation to only allow plans that are feasible with respect to the constraints in Formulation I. This formulation extends the notion of a delta offset from Formulation III to a percentage offset, where a percentage offset captures an offset through the percentage of remaining feasibility.  Specifically, we consider decision variables 
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 are immediately satisfied. Consequently, Formulation IV contains no penalty terms:

minimize 
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As with Formulation III, the equality constraints (19) can easily be folded into the calculation of the objective for this problem, so this problem is essentially bound-constrained. Since this formulation does not contain any penalty terms, all solutions to Formulation IV represent feasible solutions to Formulation I.  However, this formulation may be difficult to solve with a general-purpose optimization strategy since the variables 
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 for tasks at the beginning of a job can limit the sensitivity of a solution to values for later tasks by allowing for a small absolute range of feasible values for the later start times.

5 Mixed Integer Linear Program Formulation

This section describes a mixed-integer linear-programming (MIP) formulation of the EPM planning problem. This formulation differs from Formulation I in that the time horizon is discretized to facilitate the linearization of the formulation (in particular, constraints (5), (7) and (8)).

The time horizon is broken into time periods, and each period is decomposed into a fixed number of units (currently hours).  Task lengths are given in units.  The MIP also considers an intermediate length of time called a slot (currently a day).  There are a fixed number of units per slot and a fixed number of slots per period.

A schedule assigns a start time and facility type to each task using a 0-1 variable 
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 beginning at time slot 
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. Thus the time granularity for scheduling in this model is time slots and not time periods. As in Formulation I, each technician 
[image: image107.wmf]e
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, the (fractional) number of time units. 

To limit the size of the MIP, "big" tasks with length at least a slot are aligned with slots (days) by starting them at the beginning of a slot. Short tasks (strictly less than a slot long) can start on unit boundaries.  This introduces less unforced idle time and makes the MIP output more comparable to output from the PPM.  This is implicitly represented in the MIP with the 
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 function.  Start times are specified as slots, but understood to be mid-slot if (1) a predecessor is running at the start of the slot, and (2) the task can finish before the end of the slot while obeying precedence constraints.  That is, a short task will never be split across two slots.
To be more explicit, there are two types of precedence constraints: packed and normal.  In a normal precedence constraint, the successor cannot start until the slot after the completion of the predecessor.  In a packed precedence constraint, the (short) successor can “pack” into the remaining time in the slot where the predecessor finishes (without going into the next slot).  Therefore, long tasks have only normal predecessor constraints with their single immediate ancestor (if it exists).
If a short job has a packing precedence constraint with its immediate ancestor, we may need to add one more (normal) constraint with a nonadjacent predecessor.  For example, if there is a chain of many unit-sized jobs, each pair can share a slot, but the entire chain may not fit into a single slot.  Specifically, let the precedence chain for short job j be p1, p2, …, pd, where p1 is job j’s immediate ancestor, p2 is p1’s ancestor and so on.   There is a constraint between job j and job pd if all the following conditions are met:

1) job j and jobs p1 through pd-1 all fit in a slot,

2) adding job pd to the group in (1) would overflow a slot, and 

3) Jobs p1 through pd all fit in a slot.

The first condition implies there are no extra constraints required between job j and predecessors jobs p1 through pd-1. The second condition implies a normal constraint between job j and pd. However, if the third constraint is not met, then there will already be a (nonadjacent) constraint earlier in the chain (e.g. between p1 and pd) and therefore adding one between j and pd would be redundant.
The following variables are also used to define the MIP formulation:
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We are now prepared to define the MILP formulation (Formulation V):

minimize 
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Constraints (20) assure that every task is completed.  Constraints (21) assure that a task is not started until all predecessors are completed. One could assure some separation of start times by enforcing only one such constraint on the mid-points of each (predecessor, successor) pair, but this formulation is likely to be tighter. Constraints (22) ensure that there is sufficient facility capacity in each time period.  Constraints (23) ensure that each technician is not used longer than his availability, and constraints (24) ensure that there are enough technicians assigned to meet the demand for certification hours in each time period.  Constraints (25) ensure that no technician is assigned more time units for a certification during a time period than the sum of the task lengths (within that period) of tasks requiring that certification. Finally, constraints (26) and (27) ensure that the shortages are nonnegative quantities.

6 Data Characteristics and Preparation

To ensure that data input was consistent across all formulations, the PPM pre-processor was used to generate data files.  This also allowed the PPM to perform the translation of data from the data repositories used in practice at Pantex (Access databases), to a format that could be easily interpreted for experimentation by the various experimental formulations.  The result was a set of ASCII files containing indexed data (e.g. job, task, facility, technician, and certification information). 

The initial test data set was generated based on the Pantex database containing information specific to the 62 and 87 system operations performed during fiscal year 1998.  The team felt that this was the most refined Pantex data set. This data set does not include facility hierarchies, and each task can be assigned to single facility type.

The ASCII files contained indices referring to individual elements (e.g. the index of a task), indices of associated elements (e.g. the facility and certification indices required by a given task), and information specific to various data elements.  For example, the EAST and LAFT fractions associated with a task, or the quantity available of a given resource.  See the appendix for specific examples of these details and technical comments elaborating on the exact contents of these input data files.

The quantities contained in the ASCII files assume a base unit of one day.  Start times, EASTs, LAFTs, and task durations are represented as fractions of days.  An EAST is assumed to be the first day of the EAST period and LAFTs are assumed to be the last day of the LAFT period for a given task.  Two versions of this dataset were used in our experiments: (1) EASTs are rounded down and LAFTs are rounded up, and (2) the EASTs and LAFTs are left as fractional values.  The first data set reflects how the EASTs and LAFTs are processed within the PPM, while the raw fractional values reflect how more recent algorithms for the PPM have been applied (e.g. see [6]).

We computed a lower bound of the optimal objective value for these two data sets by considering the 43 tasks that require a type 2 facility; preliminary studies indicated that the shortage of type 2 facilities was a constraining factor in this data set [6]. We sorted these tasks in ascending order according to LAFT, from which we computed the total amount of work that must be accomplished with facility type 2 before each time period. There are two type 2 facilities available, so we compared the worked required with the available resources at each time period.  The maximum amount of work that cannot be scheduled in for type 2 facilities was 648 for the rounded problem set and 712 for the second problem set. This analysis indicates that objective for these two problems cannot fall below these values when 
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. Thus, the analysis indicates the importance of finding a way to increase the amount of facility type 2 time available, or to decrease the overall required workload.

Finally, data validation between the experimental formulations and the EPM module was accomplished by fixing the start times of the tasks in the data set (setting start time equal to EAST) and computing resource utilization using both implementations.  The resulting objective function values were compared to validate the experimental formulations.

7 Computational Experience

This section describes computational experience with Formulations II, III and IV using a standard evolutionary algorithm. We have also evaluated the final solution generated by the 
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-variable formulation to determine whether or not it is locally optimal. These optimizers were taken from the SGOPT optimization library, and the resource overage was computed with a problem formulation that was carefully benchmarked against the EPM 
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-variable formulation.

7.1  Evolutionary Algorithms

We have done a preliminary evaluation of the applicability of evolutionary algorithms (EAs) to Formulations II, III and IV. The goal of this effort was to evaluate whether or not the domain-specific methods developed by the PPM team (particularly the 
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-variable and 
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-variable formulations) provide significantly better solutions than a general-purpose global optimization heuristic like an EA.  The EA used in this work is a method similar to evolutionary programming [1], a standard class of EAs used to optimize over continuous domains. This EA uses an intermediate crossover operator and a self-adapted normally distributed mutation operator. No effort was made to tune this method for these formulations, and bound constraints were implemented with a penalty method that biases the search towards feasible points.

In Formulations II and III, the EA had difficulty identifying feasible points.  Even when allowed to run for an extended period of time, this EA was unlikely to find a single feasible point. In Formulation IV, all points are feasible but the search is highly sensitive to some parameters more than others.  The EA was used to optimize with Formulation IV with a time limit of 10,000 function evaluations; a function evaluation consists of computing the resource overage for a single production plan.  On code compiled without compiler optimization turned on (and in fact, with debugging flags set on), this took about 20 minutes on a Sun Sparc 20.  The EA was run with a set of 15 random seeds on both the rounded and unrounded data sets, and the distribution of final solutions generated by the EA had the following characteristics:

Statistic
Minimum
Median
Mean
Maximum

Rounded
3269
3722
3728
4226

Unrounded
3560
3615
3666
3920

This should be compared with the solution generated by the 
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-variable formulation, which was 4281 and 4479 for the rounded and unrounded data sets respectively. Thus in all of these trials the EA found better solutions than the solution generated by the 
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-variable formulation, and the average solution generated by the EA is at least 12% lower than the 
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-variable solution. Finally, from our lower bound on the optimal solution value, we can determine that in the unrounded data set the EA found solutions within 1% of the global optimum in 46% of the trials; for the rounded data set the EA found such a solution in only one of the trials. Consequently, these results indicate that general-purpose optimization strategies may be effective for this application

7.2  Local Refinement

We evaluated the degree to which the final solution generated by the 
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-variable formulation is locally optimal by applying a simple direct search procedure to this solution. We applied a simple pattern search method [5] to this solution using Formulation II with a penalty factor of 100,000 for violated precedence constraints.  This algorithm was run until the step length parameter fell below 
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; this required approximately 10,000 function evaluations, and the pattern search method finished within 25 minutes.  This optimizer was able to refine the initial 
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-variable solution for both the unrounded and rounded data sets to a globally optimal point. This shows that our bound on the global optimum is tight for these problem sets. Further, this result strongly suggests that the 
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-variable formulation does not generate locally optimal solutions, and that refining the solutions generated for different formulations could substantially improve their quality.

8 Evaluating the EPM Problem Formulation

Our reformulation of the EPM production planning problem has led to several insights into our current formulations of this problem.  This section discusses these insights and provides suggestions for strengthening the problem formulation

8.1 An Optimistic Approximation

Formulations I and Ia are approximations to the actual scheduling problem faced by Pantex.  The use of such an approximate model is appropriate because these models are being used for broader planning purposes. Thus data uncertainties in the model are less important because it does not aim to provide a true schedule to Pantex.

Because these problem formulations are approximations, it is important to understand whether they provide an optimistic or pessimistic evaluation of the resources needed to complete a set of tasks. In fact, these formulations offer an optimistic evaluation because the assignment of technicians to tasks is not exact. Consequently, solutions to these forms of the EPM production planning problem are best used for arguing that too few resources are available to meet a set of production goals.

It is also important to note that the granularity of the time period over which technicians are assigned to certifications impacts the accuracy of these formulations.  Specifically, solutions with longer time periods are more optimistic than solutions with shorter time periods. This is unfortunate because the use of longer time periods is very desirable since this reduces the number of variables in the problem. Thus we need to evaluate the trade-off between the desired level of accuracy and the time-frame for solving problems, and it might be interesting for the PPM toolkit to allow users to explicitly control this trade-off (e.g. to get more accurate predictions once a reasonable approximate solution was found).

8.2 Evaluating the Network Flow Subproblem

The network flow subproblem used in Formulations Ia-IV captures the assignment of technicians to certifications. The following example shows how adding more work to a time period can actually lead the network flow subproblem to reduce the predicted technician overage. Consider the following set of tasks that are run in a given time period:

Task #
Crewsize
Duration (Days)
Certification

1
7
2
1

2
1
1
1

3
1
1
1

4
1
1
1

5
4
6
2

6
1
1
1

Further, suppose we have seven technicians all of which have certification one and four of which have certification two. The following figure illustrates the corresponding network flow problem that can be used to determine the overage when tasks 1-5 are scheduled for a six-day time period:
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This network has a minimum cut with a flow of 40, which means that two additional technician days are needed (in particular, to meet the demand for certification one). Now consider the following network flow when the sixth task is also included:
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In this case the network has a minimum cut with a flow of 42, which means that no additional technician days are needed. Thus by adding a task to a time period we have reduced the amount of technician overage!

The reason for this discrepancy is the fact that technician resources are constrained on the granularity of a time period, and because technicians are assigned to certifications rather than tasks. We expect that assigning technicians to tasks will eliminate this problem, and it will provide a tighter formulation; that is, it will provide a closer estimate of the true resource overages. We can augment Formulation I using the variable 

Yejt
=
number of days that technician e works on task j in period t

to get the following formulation (Formulation VI):

minimize 
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Constraints (33), (34) and (40) are the principle changes from Formulation I. Constraint (33) ensures that a technician can only work on a task as many hours as that task is scheduled for the given time period. Constraint (34) explicitly relates yect to Yejt, which was implicitly done earlier by the definition of yect. Finally, constraint (40) simply ensures that technicians work a nonnegative number of hours on each task.

Formulation VI is tighter than Formulation I and its derivatives because of the additional constraint on the Yejt variables. Further, we can revise this formulation like Formulation Ia to assume that 
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 for all j and to formulate a network flow subproblem. Formulation VIa requires a network flow subproblem that represents technician assignments to task as flows from technician nodes to task nodes. The weights on the edges of this network are set as follows:
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This network is illustrated in Figure 3. Note that instead of certification nodes we now have task nodes. Since the total hours of certification overage equals the number of hours that tasks are not scheduled, this network flow problem captures the same information as the previous network flow problems. Further, the values of the certification overate,
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Figure 3: Illustration of the network flow subproblem in Formulation VIa.

8.3 Smoothness

The resource overage objective function used for the EPM is piecewise linear because the underlying network flow problem is linear.  This is a particularly nice class of problems.  For example, subgradient or bundling optimization methods would probably be a better choice than the pattern search method used in our study.  However, using a subgradient method requires a more explicit solution to the network flow problem, since this method would need to be reformulated to provide gradient information with respect to the decision variables.

As a first step in this direction we analyze the derivatives of Formulation I.  We now compute the change in the objective function (sum of facility and technician overages, all equally weighted) as a single job is moved infinitesimally forward or backward in time.  For each time slot, we have a flow network as illustrated in Figure 2. For a particular certification C, technician assignments are represented by the flow through the subnetwork consisting of nodes s, C, t, and those workers Ei with certification C.

The gradient with respect to a job J with certification C depends upon the structure of the flow and the residual graph. Given a flow f(i,j) over each edge (i,j) in a graph where each edge has capacity (ij, the residual graph has the same topology as the original graph, but the new capacities 
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. This is a directed graph.  In the networks we use to assign technicians, capacity is only positive in the forward direction (from s to Ei, from Ei to Cj and from Cj to t), and backward capacity is 0.  Flow is antisymmetric (fij = -fji).  Thus for one of the forward edges, the residual capacity represents the amount of extra flow an edge can carry forward.  For a backward edge, (j,i), the residual capacity is fij (the amount of flow going forward).  This represents the ability to “send” flow from node j to node i by holding it back at node i.  An augmenting path is an s-to-t path in the residual graph. A flow is maximum if and only if there are no augmenting paths in the residual graph.  In particular, for a maximum flow, every path from s to t in the network has at least one saturated edge, that is, an edge where the flow is equal to the capacity of the edge (and hence the forward residual capacity is zero).

We now consider the subnetwork representing the technician assignment to certification C and distinguish the direct s-to-t paths based upon the pattern of saturated edges in the maximum flow.  In the following diagrams, the hatched edges are saturated. The simplest case is the type 0 path where the (C,t) edge is the only saturated edge (recall there is only one (C,t) edge for each certification C).
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If there is a type-0 path, then the gradient is 0. If the work is slightly increased, then employee E can do the extra work (additional capacity on the rest of the path), so there is no overage created.  If the work is slightly decreased, the overage for certification C remains zero.  There is no opportunity to use this decrease in work for certification C to increase work in another unfinished certification. If any employee could shift work from C to another (unfinished) certification C’’, then they would in any maximum flow (employee E could complete the extra work on certification C).

There are 3 possible saturation patterns for the direct paths from s to workers E having certification C. We associate the type with the path and the worker represented on the path. The dashed line on edge (C,t) indicates that edge could be saturated or not. First consider the case where (C,t) is not saturated.

If a job of certification C is shifted slightly into the time period (work increase (), then the capacity of edge (C,t) increases by Hj (, where Hj is the crew size for job j, and the capacity of edge (E,C) increases by (. The flow over edge (C,t) can increase ( for each s-to-E augmenting path in the residual graph, where worker E has certification C.  For type-1 workers, this augmenting path is trivial (edge (s,E)).  These paths cannot exist for type-2 workers, since their existence would imply an augmenting path in the original residual graph. For type-3 workers, there must be a more complicated augmenting path such as the one illustrated below. Such a path is not ruled out, since in the previous max flow, edge (E,C) was saturated and therefore not in the residual graph.  Augmenting along this path shifts work on certification C2 originally done by worker E to worker E2 and work on certificationC3 from worker E2 to worker E3. Essentially, such an augmenting path makes a type-3 path effectively type 1. Thus the work-increasing gradient for this time period is 
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, where nSE is the number of workers E with s-to-E augmenting paths.  More explicitly we have 
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, where n1 is the number of type-1 paths for certification C and n3a is the number of type-3 paths with an augmenting path to E. Note that these augmenting paths could share edges, so we could not maximally augment them all simultaneously.  However we could augment them all for sufficiently small (.

We now consider the gradient when shifting work of certification C out of the time period. The capacity on edge (C,t) now decreases by 
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 and the capacity of edge (E,C) decreases by (. However, ( flow is maintained for each path with an E-to-t augmenting path in the residual graph. This corresponds to worker E shifting work from certification C to another. Paths of type 1 cannot have such an augmenting path because it would imply an augmenting path in the original residual graph. Type-2 paths have a trivial augmenting path along edges (E,C) and (C,t), corresponding to worker E maintaining the same level of effort on certification C.  Type-3 paths can have more complicated augmenting paths (representing a perhaps-cascading shift of assignments among workers to ultimately increase effort on another certification with overage). Sliding a job out of the time period decreases work available for certification C  by Hj( and the amount of work assigned by 
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, where nEt is the number of workers E with an E-to-t augmenting path. Therefore the work-decreasing gradient for this time period (change in total overage) is
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Now consider the case where there is no overage for certification C (edge (C,t) is saturated). Increasing work is identical to the case where it is not saturated except that we cannot create negative overage for certification C.  Therefore the work-increasing gradient for this time period is 
[image: image187.wmf]min(

H

j

-

n

SE

,

0

)

. Note that now type-2 workers can have s-to-E augmenting paths. If work is decreased, the overage can decrease by at most
[image: image188.wmf]H

j

d

. This must all come from workers shifting to work on other certifications.  Type 2 paths no longer have an automatic augmenting path.  The work-decreasing gradient for this time period is 
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Because the flows for the time periods are independent, the total gradient is the sum of a work-increasing gradient on one end of the moving job and a work-decreasing gradient on the other.

9 Discussion
Our formulation of the general EPM production planning problem in Formulation I provides a basis for comparison between different formulations for this problem. Formulation Ia illustrates how this problem can be reformulated to facilitate the application of general-purpose optimization methods. Furthermore, Formulations II, III and IV reformulate this problem so that simple bound-constrained optimizers can be used to solve it. The MIP formulation can be viewed as an approximation to Formulation I to the extent that the discretization of time creates (a) a discrete set of starting points for jobs and (b) the packing of short jobs into time slots approximates the scheduling of these jobs together within a day.

Our empirical results with EAs offer evidence that general-purpose optimizers can be effectively applied to this application both for finding near-optimal solutions, but also for generating a distribution of good solutions. Further, our refinement experiment highlights the fact that the formulations that we consider for the EPM planning problem need to include a final refinement step. The MILP formulation of the EPM planning problem (Formulation V) is still being developed, but preliminary experiments with this formulation suggest that the bound derived from this linear model may not be particularly strong.

We are extending this work in several directions. First, we have begun to develop EAs and pattern search methods that can be applied to linearly constrained problems like Formulation Ia. We expect that general-purpose optimizers that appropriately account for linear constraints can be more effectively applied to Formulation Ia than the methods that are applied to Formulation IV. The sensitivity of the variables along the precedence chains is a worrisome feature for this formulation, and we expect that it will be particularly problematic for problems with long precedence chains.

We have also begun to reconsider the simplifications made to develop Formulations II, III, IV. In particular, these formulations assume that every task can only be assigned to one facility type; this simplification was made to facilitate benchmark comparisons between the EPM solutions and the methods developed within 9200. Limiting the facility assignments reduces the set of decision variables in Formulations II, III and IV to the scheduling start times for tasks. However, if this simplification were not made then the decision variables would also include the facility assignments, which would make the planning problem a mixed-integer nonlinear optimization problem. We expect that these problems would be significantly harder to solve, especially if the facility hierarchy was also included in the formulation.
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Appendix

##

## Database of tasks

##

## Format:

##  integer     id

##  char string description

##  integer     east (units are time periods)

##  integer     laft (units are time periods)

##  double     duration (units are time periods)

##  integer     predecessor ID

##  integer     child_flag (1 if true)

##  integer     number of technicians

##  integer     certification ID

##  integer     facility type

##

130

1,432,2.333333,8.5,2.5,-1,0,2,6,1

2,489,.3333333,7.5,1.666667,-1,0,1,8,2

3,521,0,29.66667,4.166667,-1,0,2,6,1

.

.

.

##

## Database of facility availability by time period

##

## Format: each row indicates the number of each of the

## facilities that are available.  The order is assumed to follow that

## given in the facilities database;

##

42

4,2,4,4,4,1,2,2

4,2,4,4,4,1,2,2

4,2,4,4,4,1,2,2

.

.

.

##

## Database of facility hierarchy

##

## Format:

##  integer     facility ID

##  char string description

##  integer     facility predecessor in hierarchy

##

8

1,1,-1

2,2,-1

3,10,-1

.

.

##

## Database of technicians

##

## Format:

##  integer     technician ID

##  char string description

##  integer     number of certifications

##  integer,...,integer certification (in sorted order)

##

47

1,7,1,10

2,15,1,10

3,17,1,10

.

.

.
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* The current algorithm implemented for stage one in the Pantex Process Model is actually a slight variation of the formulation documented in [3].  The formulation documented in [3] has a set of constraints that ensure start times are not computed in a way that violates precedence.  In the variation of the algorithm implemented in the Pantex Process Model, primarily to decrease computation time, these constraints have been relaxed for those tasks that are shorter than one time unit.  Our comparative results reflect what is implemented in the Pantex Process Model. 
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